Meningococcen

TOM VERCRUYSSE AZ SINT-LUCAS GENT

De artsen van AZ Sint-Lucas hebben deze presentatie met zorg opgemaakt. De inhoud ervan is algemeen en indicatief.
AZ Sint-Lucas en de artsen zijn niet aansprakelijk voor eventuele vergissingen, tekortkomingen of onvolledigheid van deze presentatie.

Meningococcal disease: waarom is immunisatie belangrijk?

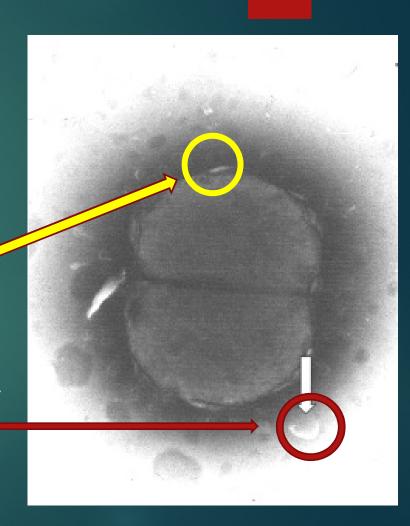
- Zeer destructieve infectie
 - <u>Pediatrische populatie</u> (tienmaal meer bij -2jarigen dan in algemene bevolking)
 - Voordien gezond
 - Hyperacuut
 - Mortaliteit/morbiditeit quasi onveranderd sinds jaren '70

Klinisch beeld

Diagnostiek

Behandeling

Meningococcal disease

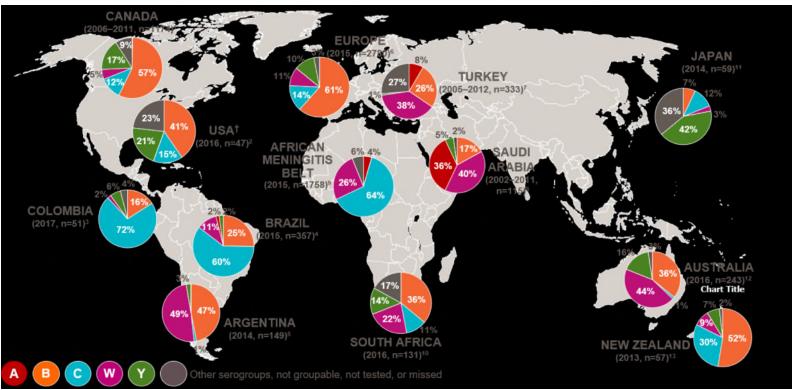

Neisseria meningitidis

▶ **1805** (Vieusseux) : fièvre cérébrale maligne non contagieuse

1887 (Weichselbaum): diplococcus intracellularis meningitis

► Gram negatieve diplococ

- Anaeroob
- ▶ Fimbria: binding aan CD46 receptoren
- ▶ Polysaccharide kapsel
 - ► Resistent aan fagocytose
 - ▶ 13 serotypes, waarvan 6 dominante : A,B,C, W-135, X en Y
- ► Lipopolysacharide in kapsel = endotoxine
 - ▶ Release van inflammatoire mediatoren


- ► Mens is <u>enige natuurlijke gastheer</u>
 - ▶ Naso-faryngeaal
 - ▶ Anale mucosa
 - ▶ Conjunctiva
 - ▶ Urogenitale tractus
- ► <u>Asymptomatische drager</u>
 - ▶ 2%-4,5% bij kinderen onder 5 jaar
 - ▶ Piek van 20-25% adolescenten jongvolwassenen
 - ▶ 8% 50-jarige volwassenen
- ▶ Infectie via droplets (aërosol)
 - Overleeft niet / close contact

- ▶ Incidentie
 - ► Wereldwijd: 500,000/jaar
 - ► Epidemisch: 'African meningitis belt'
 - **1200/100,000**
 - ► Endemisch: Noord-Amerika, Europa en Australia
 - **>** 0,3-3/100,000

Five Neisseria meningitidis serogroups cause the majority gsk of IMD, which vary across countries and regions*

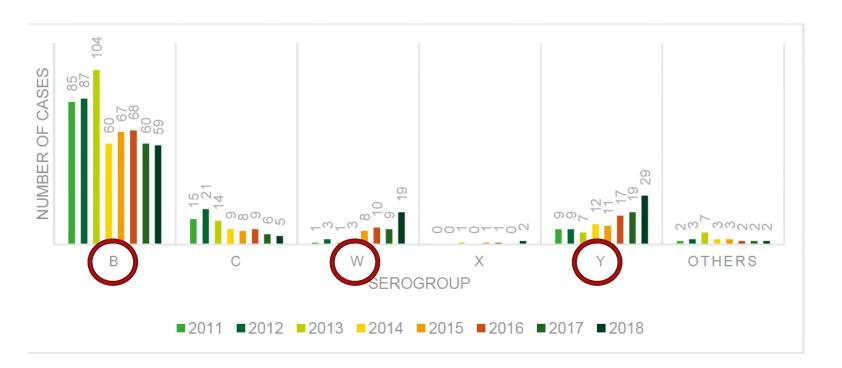
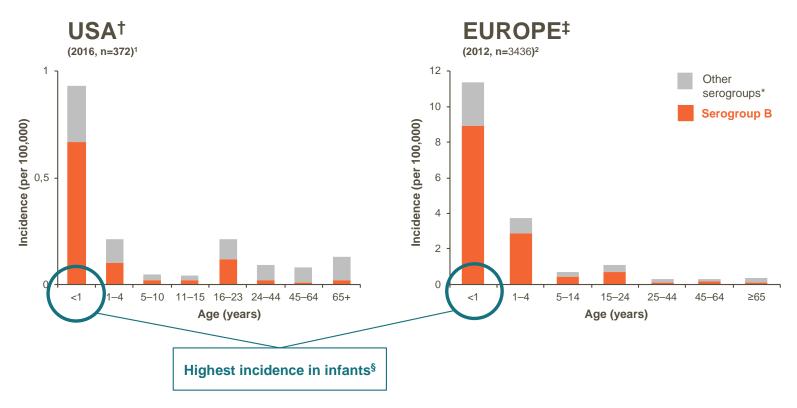

*Serogroup distribution cannot be directly compared across countries due to variability in surveillance data availability; †USA: 23% 'other' serogroups includes serogroup W and nongroupable; surveillance data cover only some areas of the USA, representing ~44.2 million people; IMD, invasive meningococcal disease

Figure adapted from: 1. Li YA et al. Can Commun Dis Rep 2014;40(9):160-171; 2. Active Bacterial Core surveillance (ABCs). Surveillance reports, Neisseria meningitidis, 2016. Centers for Disease Control and Prevention. nening16.pdf; 3. Vigilancia por laboratorio Neisseria meningitidis (aislaminetos invasores) periodo 1987–2017. Instituto Nacional de la Salud. Grupo de Microbiologia. 2018 017.pdf; 4. Ministry of Health / SVS - Notifiable Diseases Information System - SINAN Net. <u>iinbr.def;</u> 5. Servicio Bacteriología Clínica-Departamento Bacteriología-INEI-ANLIS Dr.C.G. Malbrán-ARGENTINA. SIRÉVA II. <u>http://antir</u> /2015/09/Tablas-vigilancia-SIREVA-II-Nm-2014-Argentina1.pdf; 6. ECDC. Surveillance Report: Annual Epidemiological Report for 2015, 1999–2015. https://ecdc.europa.eu/sites/portal/files/documents/AER_fo isease.ndf; 7. Ceyhan M et al. Hum Vaccin Immunother 2014;10:2706-2712; 8. Memish Z et al. Euro Surveill 2013;18:pii=20581; 9. WHO. 2016. Wkly Epidemiol Rec 2016;91:209-216; 10. National Institute for Communicable

Diseases. GERMS-South Africa Annual Report 2016. http 17/03/GERMS-SA-AR-2016-FINAL pdf: 11. Fukusumi M et al. Vaccine 2016;34:4068-4071; 12. Australian Meningococcal Surveillance Programme 3300191F9B/\$File/cdi4104-i.pdf; 13. Lopez L et al. The epidemiology of meningococcal disease in New Zealand in 2013. Institute of PM-BE-BEX-PPT-200018 - July 2020 Feb. 2020)


Belgium from 2011 to 2018: Evolution of IMD confirmed cases per serogroups

MenB incidence is generally highest in infants and young children, with a smaller peak in adolescents

The same results were first published in CDC, 2017. http://www.cdc.gov/meningococcal/surveillance/ (left figure) and the European Centre for Disease Prevention and Control (ECDC). Surveillance report, 2012. http://ecdc.europa.eu/en/publications/Publications/Surveillance%20of%20IBD%20in%20Europe%202012.pdf (right figure)

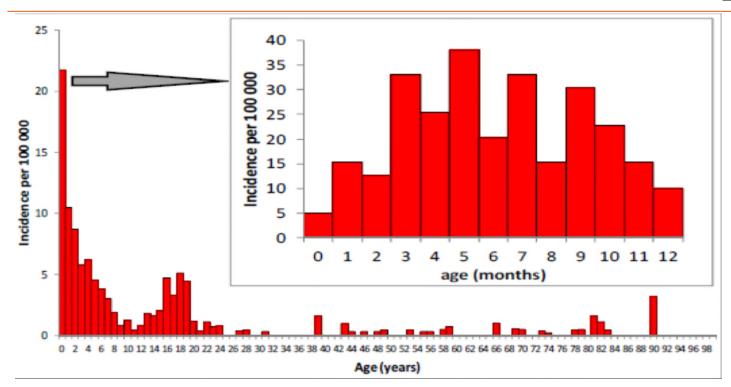
^{*}All other serogroups, not groupable, not tested or missed; †Unknown serogroup (20%) and other serogroups (5%) excluded;

[‡]Contributing countries: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the UK

[§]In Europe, MenB risk is more than 10-times higher in infants than in adolescents and young adults²

^{1.} Centers for Disease Control and Prevention (CDC), 2017. Enhanced Meningococcal Disease Surveillance Report, 2016. https://www.cdc.gov/meningococcal/downloads/NCIRD-EMS-Report.pdf (accessed Feb. 2020); 2. European Centre for Disease Prevention and Control (ECDC), 2015. Surveillance of invasive bacterial diseases in Europe, 2012.

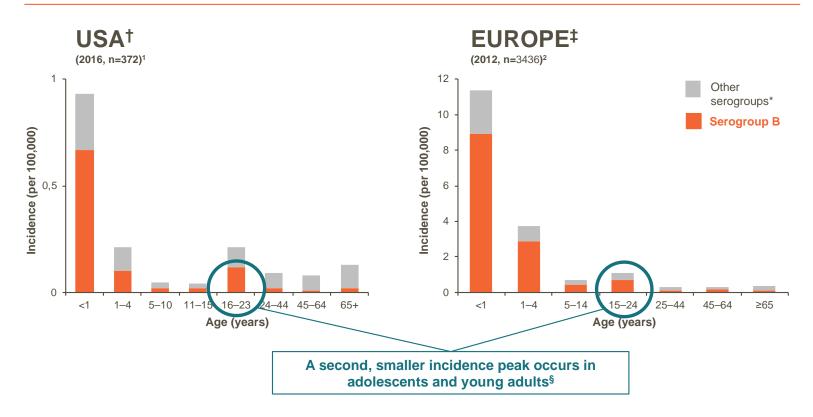
14
http://ecdc.europa.eu/en/publications/Publications/Surveillance%20of%20IBD%20im%20Europe%202012.pdf (accessed Feb. 2020)


PM-BE-BEX-PPT-200018 - July 2020

Dataset (right figure) provided by ECDC based on data provided by WHO and Ministries of Health from the affected countries; graph has been independently created by GSK from the original data

Incidence of serogroup B cases by year of age In Belgium

gsk


Average 2009-2010

Incidence is highest under 1 year old with a peak between 3 to 9 months

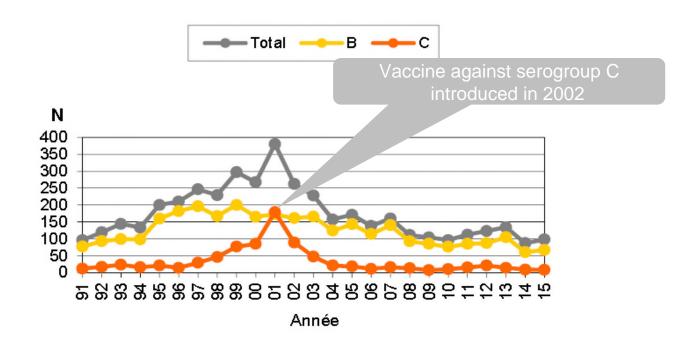
MenB incidence is generally highest in infants and young children, with a smaller peak in adolescents

The same results were first published in CDC, 2017. http://www.cdc.gov/meningococcal/surveillance/ (left figure) and the European Centre for Disease Prevention and Control (ECDC). Surveillance report, 2012. http://ecdc.europa.eu/en/publications/Publications/Surveillance%20of%20IBD%20in%20Europe%202012.pdf (right figure)

^{*}All other serogroups, not groupable, not tested or missed; †Unknown serogroup (20%) and other serogroups (5%) excluded;

[‡]Contributing countries: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and the UK

[§]In Europe, MenB risk is more than 10-times higher in infants than in adolescents and young adults²


^{1.} Centers for Disease Control and Prevention (CDC), 2017. Enhanced Meningococcal Disease Surveillance Report, 2016. https://www.cdc.gov/meningococcal/downloads/NCIRD-EMS-Report.pdf (accessed Feb. 2020); 2. European Centre for Disease Prevention and Control (ECDC), 2015. Surveillance of invasive bacterial diseases in Europe, 2012.

http://ecdc.europa.eu/en/publications/Publications/Surveillance@20of%20IBD%20In%20Europe%202012.pdf (accessed Feb. 2020)

PM-BE-BEX-PPT-200018 - July 20/Dataset (right figure) provided by ECDC based on data provided by WHO and Ministries of Health from the affected countries; graph has been independently created by GSK from the original data

Impact of meningococcal C vaccination in Belgium¹

Substantial reduction of serogroup C (in all age groups) after introduction of vaccination. There is **no clear link** with decreasing trend of serogroup B

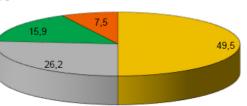
Verwekker en Incidentie

^{1. (}Figure adapted from) ISP-WIV (Sciensano). Centre National de Référence des Neisseria meningitidis. Rapport annuel 2015. http://bacterio.wiv-isp.be/reporting/reportspdf/Rap%20An%20Neis%202015%20Fr%20couv.pdf [Accessed Feb. 2020]

Belgium 2019: Sciensano report for Q4 2019

Verwekker en Incidentie

Key messages:


In 2019, 107 confirmed cases (annual incidence = 0.94/100.000) – comparable to 2018

Serogroup B in 49,5% of cases, W in 26,2%, Y in 15,9% and C in 7,5%

14 deaths (4 B, 4 W, 3 C and 3 Y) (CFR = 13,1%);

45,8% cases in Flanders, 43,0% in Wallonia and 11,2% in Brussels

31.0% of cases in children < 5 years, and 9.3% in adolescents aged 15-19 years

PM-BE-BEX-PPT-200018 - July 2020

Sciensano report 4th trimester 2019 -

https://www.sciensano.be/sites/default/files/t4_2019_sciensano_1.pdf_last consulted 14/07/2020

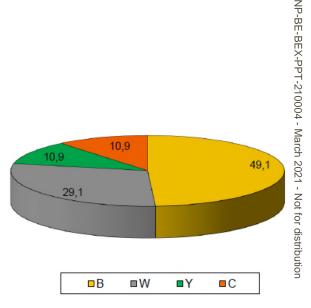
België 2020:

Sciensano rapport voor Q4 2020

Hoofdpunten:

En 2020, 55 bevestigde gevallen (jaarlijkse incidentie = 0,48/100.000)

Serogroep B in 49,1% van de gevallen, W in 29,1%, Y in 10,9% en C in 10,9%


2 sterfgevallen (1 W en 1 C) (CFR = 3.6%);

50.9 % van de gevallen in Vlaanderen, 30.9% in Wallonië en 18,2% in Brussel

38.2% bij kinderen < 5 jaar en 9.1% bij adolescenten tussen 15 en 19 jaar

Het aantal gevallen waargenomen in 2020 was beduidend lager dan 2019 (n =107). De Covid-19 pandemie met de bijhorende maatregelen hebben duidelijk een effect gehad op de verspreiding van invasieve meningokokken infecties.

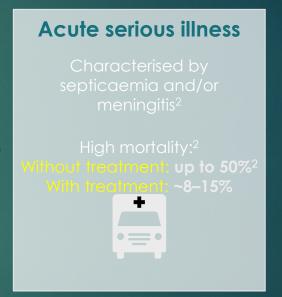
Verwekker en Incidentie

Sciensano rapport 4ème trimestre 2019 – https://www.sciensano.be/en/health-topics/meningitis/numbers#meningitis-in-belgium consulted in March 2021

CFR: Case Fatality Rate

Klinisch beeld

Diagnostiek


Behandeling

Klinisch beeld

IMD is an acute, serious illness that can be easily misdiagnosed and requires urgent medical attention

- 1. Thompson MJ et al. Lancet 2006;367:397-403
- 2. World Health Organization (WHO), 2018. Meningococcal meningitis. Fact sheet no. 141. http://www.who.int/mediacentre/factsheets/fs141/en (accessed Feb. 2020)

▶ <u>Incubatieperiode</u> 2-10 dagen (gem 3-4 d)

▶ <u>Prodromi</u>: zoals bij virale BLWI: keelpijn, hoest, coryza, otalgie

► Klinische presentatie verschilt naargelang <u>de leeftijd</u>

Klinisch beeld

- ► Meningitis (15 %)
 - koorts, hoofdpijn +++, braken, meningeale prikkeling (>2 jaar), bulging fontanel,lethargie, fotofobie,...

- Hyperacuut, koorts, asthenie, BWZ daling, intense myalgie onderste ledematen
- Petechiën (drukplaatsen), purpura/ soms initieel maculopapulair of urticarieel
- ▶ Drie vroege tekenen van sepsis bij meningococcen!!
 - ▶ Pijn benen
 - ► Koude extremiteiten
 - ▶ Bleke, gebloemde huid
- ▶ 60 % Meningitis-sepsis!!

- ▶ Primaire <u>pneumonie</u>
- Septische arthritis (C,W): adolescenten, knie of heup
- ► Chronische meningococcemie
 - ► Laaggradige koorts, maculopapulair exantheem, arthralgie-arthritis
 - Weken tot maanden
- Primaire pericarditis (C,W)
- ▶ <u>Zeldzaam</u> conjunctivitis, osteomyelitis, epiglottitis, cellulitis,...

Klinisch beeld

Up to 20% of IMD survivors may have sequelae¹

Orthopaedic²⁻⁴

- Limb loss
- Hemiparesis
- Skin loss
- Growth plate arrest

Systemic^{2,5}

- Chronic organ damage
- Adrenal failure
- Immune disorders

Sensorial^{2,6,7}

- Hearing loss
- Visual impairment

Neurological^{2,5,6,7,8}

- Brain abscess
- Seizures
- Motor deficits
- Stroke

Cognitive / psychiatric^{3,6,8}

- Cognitive impairment
- Neurodevelopmen t deficits
- Neuropsychiatric disorders

BE/BEX/0033/18 - August 2018 - not for distribution

Some sequelae do not become evident until years after the illness, when routine follow-up has ceased^{3,4,6,8}

Klinisch beeld

Diagnostiek

Behandeling

Diagnostiek

Klinisch beeld

- o Abrupte koorts met fulminant ziektebeeld
- Toxisch aspect / Verlaagd bewustzijn
- Petechiën, purpura
- Meningeale prikkeling
- Meningococcensepsis triade

GEEN UITSTEL BEHANDELING!!

Technische onderzoeken

- Bloedonderzoek
 - CRP elevatie/ Leucocytose met linksverschuiving of leucopenie/ thrombocytopenie
 - Cultuur
- o Lumbaalpunctie ←
 - Leucorachie (>1000 wbc/mm³)
 - Lage glucorrachie (<40 mg dl of gluc^{LV}/gluc^{ser} <0,4)
 - Hoge proteïnorrachie (>50mg/dl)
 - o Microscopie rechtstreeks / PCR
- o Andere: keelkweek, urineonderzoek, kweek huidletsels,...

- Septische shock
- Recent convulsies
- Intracraniele hypertensie
- Verlaagd bewustzijn
- Huidinfectie op punctieplaats

Klinisch beeld

Diagnostiek

Behandeling

Behandeling

- ► Meningococcensepsis
 - ▶ IV AB (derde generatie cefalosporine) : cefotaxime/cetriaxone
 - ▶ IV vocht
 - ► IV inotropica (adrenaline)
 - ▶ Zuurstof
 - ► Intubatie gecontroleerde ventilatie
 - ▶ Minder nood aan zuurstof
 - ▶ Arteriële CO2 niveau : intracraniële druk

Klinisch beeld

Diagnostiek

Behandeling

Recommendations SHC* July 2019

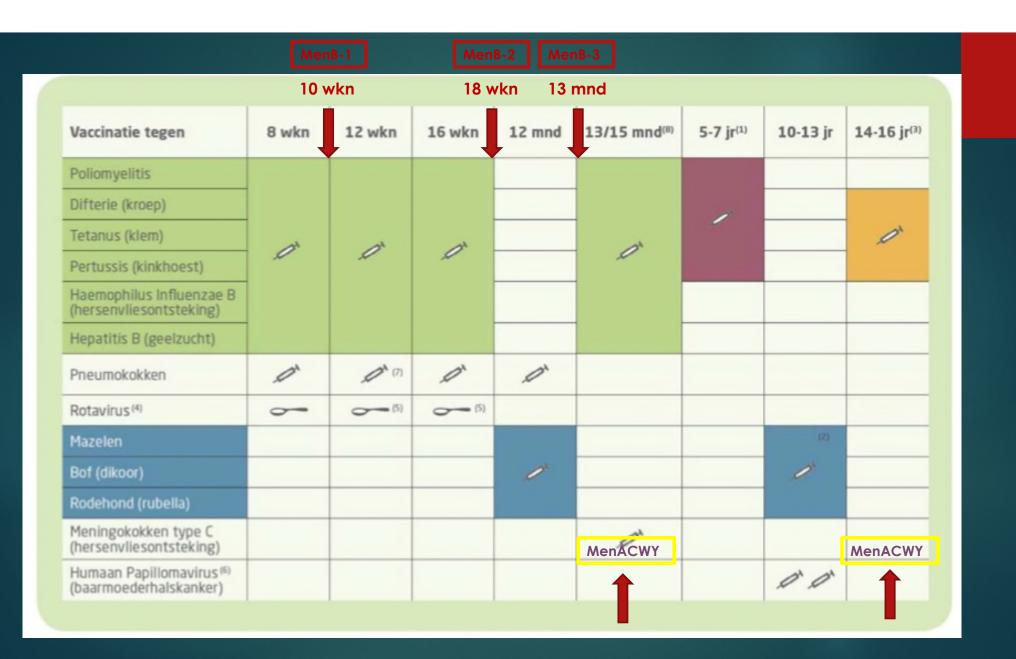
Vaccination	Context		
 Men ACWY At 15 months At 15-16 years (with Tdap) + Catch up 15-19 yoa until 2024) 	 Increasing incidence Y and W (BE + other countries) Age distribution of cases Herd effect on infants/adolescents Waning immunity MenC 		
 MenB No UMV Recommended on individual basis for: Children from 2 months to 5 years Adolescents 15-19 years Risk groups 	 Confirmation of proven efficacy and no major side effects Low incidence MenB Need for early vaccination at the age of 2 months together with routine vaccines: this requires prophylactic paracetamol against high risk of fever 3 shots at the same time requires high acceptance from parents and vaccinators and may lead to lower vaccinaton coverage for routine vaccines Poor cost-effectiveness (expensive vaccine, rare disease) No herd immunity, no effect on carriage 		
Reevaluation will occur to take into	account efficacy data & epidemiology		

Recommendations SHC* July 2019

Schedule for children < 1year

Scheme	Dose 1	Dose 2	Booster	Comment	
Best	8 weeks (2 M)	16 weeks (4 M)	11-14 months	With routine V + paracetamol	
Alternative	10 weeks	18 weeks (4.5 M)	11-14 months	Alone, no paracetamol	
	12 weeks	20 weeks (5 M)	11-14 months	With routine V + paracetamol	

≠ label


For children below 6
months, need min 6
months between
primary series and
booster

Schedule for other ages

Age group (1st dose)	Primary vaccination	Interval between doses	Booster	
6 to 11 months	2 doses	min 2 months	during 2nd year, one dose at least 2 months after last dose 1st vaccination	3 v
12 to 23 months	2 doses	min 2 months	one dose at least 12 to 23 months after primary vaccination	
2 to 5 years	2 doses	mir(2)months	"Consider a booster dose if continue	ed
Adolescents (aged 11 to 19)	2 doses	1min 1 month	risk of exposure based on official recommendations"	ال

3 vaccinaties

2 vaccinaties

4CMenB has a clinically acceptable safety profile

Very common A is (≥1/10):

Eating disorders — e-piness, unusual crying, headache, diarrhoea, vomiting, rash, arthralgia, fever () & C), injection-site tenderness, erythema, swelling, induration, irritability

Fever and systemic reactions in infants:

When administer valone, the frequency of fever with 4CMenB is similar to that of routine infant vaccines

When administered with other infant vaccines,*† a higher rate of fever and systemic reactions abserved versus routine vaccines alone

Very common AEs (≥1//t) delaise, headache, nausea, myalgia, arthralgia, injectionsite pain, swelling, indurate anothema

4CMenB SmPC.

^{*}PCV7 and DTaP/IPV/Hib/HepB

[†]Separate vaccinations can be considered when possible. Separate injection sites must be used if more than one vaccine is administered at the same time AE, adverse event; DTaP/IPV/Hib/HepB, diphtheria, tetanus, acellular pertussis/inactivated polio vaccine/*Haemophilus influenzae* type b/hepatitis B; PCV7, pneumococcal (7 serotypes)

Current immunisation programmes with 4CMenB

Vaccinatie

As of October 2020

UK¹ 08/2015: 2m, 4m, 12m

Andorra² 02/2016: 2m, 4m, 13m

10/2016: 2m, 4m, 12m

Italy^{4,5} 01/2017: 3m, 4m, 6m, 13m

San Marino⁶ 01/2017: 4m, 6m, 7m, 13m-14m

Lithuania⁷ 01/2018: 2m, 4m, 12m-15m

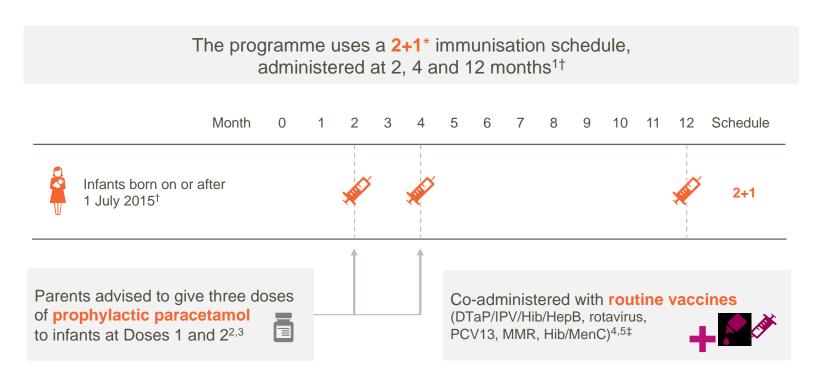
South Australia⁸ 09/2018: 2m, 4m, 12m & catch-up for 1-4 y (2d) 02/2019: Adolescents

USA⁹
Adolescents
2d, ≥1 month apart

Spain¹⁰
06/2019 (Castilla y León):
3m, 5m, 12m
07/2019 (Canarias):
3m, 5m, 15m

Malta¹¹ 12/2019: 2m, 4m, 13m

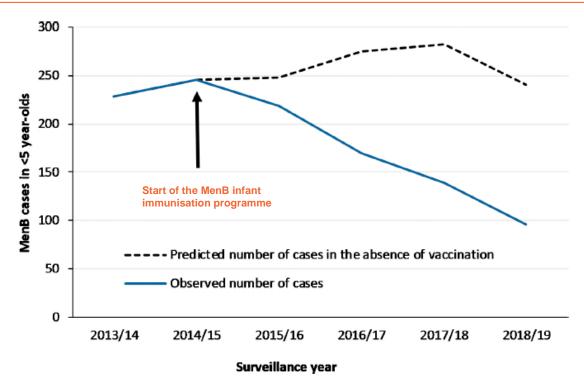
Czech Republic¹² 05/2020: covered for infants up to 6mo



Portugal¹³ 10/2020: 2m, 4m and 12 m

4CMenB was introduced into the UK national immunisation programme in September 2015^{1,2}

Vaccinatie


*The 2+1 dosing schedule recommended by JCVI was not consistent with the licensed indication for this age group;2.4 †For infants born 1 May-30 June 2015 who had their 2 month vaccinations before 1 September 2015, 4CMenB was added to vaccination schedule at 3 and/or 4 months ('catch-up cohort'); [‡]HepB vaccine introduced into UK vaccination schedule in Autumn 2017 and MenC vaccine removed for infants aged 3 months in July 2016^{6,7}

BMJ 2017;358:j3357; 7. Public Health England, 2016. MenC infant schedule letter. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/ attachment_data/file/512311/2016_MenC_infant_schedule_letter-FINAL__1_pdf (all URLs accessed Feb. 2020)

^{1.} Parikh SR et al. Lancet 2016;388:2775–2782; 2. Ladhani SN et al. Arch Dis Child 2016;101:91–95; 3. Public Health England, 2018. Using paracetamol. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/483408/9413-paracetamol-menB-2page-A4-08-web.pdf; 4. Joint Committee on Vaccination and Immunisation (JCVI), 2014. JCVI position statement on use of 4CMenB® meningococcal B vaccine in the UK. https://www.gov.uk/government/uploads/system/uploads/ tatement on MenB.pdf; 5. Public Health England, 2018. Routine childhood immunisations, 2018. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/696501/Complete_immunisation_schedule_April2018.pdf; 6. Torjesen I.

MenB cases in children under 5 years of age during 2013/2014–2018/2019 surveillance years in England

MenB cases in children < 5 years of age during 2013/2014–2018/2019 surveillance years in England (solid line) compared with MenB cases predicted by trends among unvaccinated childhood cohorts (dashed line) over the same period

Summary

4CMenB prevented 1 case of MenB every 4 days

Introduction of 4CMenB to the UK NIP has been very successful, with **coverage** >88% (2+1 schedule)

From Sept 2015–2018, **277 cases were prevented (1 every 4 days)** in the vaccine-eligible cohort, irrespective of vaccination status, number of doses received, and strain coverage¹

Substantial reduction in MenB disease, with a vaccine impact of 75% observed across all fully eligible age cohorts in vaccine-eligible infants and children¹

Sustained protection for at least 2 years after the 12-month booster¹

After **3 million doses administered**, the safety profile of 4CMenB in real-world use is **consistent** with that established in clinical trials^{2,3}

NIP, national immunisation programme

^{1.} Ladhani S. et. Al. N Engl J Med 2020;382:309-17. DOI: 10.1056/NEJMoa1901229; 2. Bryan P et al. Lancet Child Adolesc Health 2018;2:395–403; 3. Bettinger JA. Lancet Child Adolesc Health 2018:2:380–381

Vragen?

Tom Vercruysse Pediatrie AZ Sint-Lucas 09/2245413

Email: tom.vercruysse@azstlucas.be
Afspraken (ook echocardiografie) via
www.kinderartsenlucasgent.be